Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6447599 | Physics of the Earth and Planetary Interiors | 2013 | 6 Pages |
Abstract
Carbon is a plausible light element candidate in the Earth's outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 Ã 10â4 Kâ1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth's core.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
Yuta Shimoyama, Hidenori Terasaki, Eiji Ohtani, Satoru Urakawa, Yusaku Takubo, Keisuke Nishida, Akio Suzuki, Yoshinori Katayama,