Article ID Journal Published Year Pages File Type
6454949 Applied Catalysis B: Environmental 2017 13 Pages PDF
Abstract

•The Ag3PO4@PANI core@shell hybrid was successfully synthesized.•The Ag3PO4@PANI dramatically increased the charge separation efficiencies.•The Ag3PO4@PANI composite exhibited enhanced photocatalytic activity and stability.

Here we report an Ag3PO4@PANI visible photocatalyst with core@shell structure prepared by a chemisorption method. The photocatalytic activity of Ag3PO4@PANI was enhanced significantly with increasing proportion of PANI. The high photocatalytic performance for the degradation of phenol and 2,4-dichlorophenol over Ag3PO4@PANI (5 wt.%) composite photocatalyst reached 100% and 95.3%, which were 1.44 and 1.38 times of that of bulk Ag3PO4, respectively. The photocatalytic activity of Ag3PO4@PANI remained 85% after five cycling runs, whereas the activities of M-Ag3PO4/PANI (5 wt.%) and Ag3PO4 remained 42% and 24%, respectively, indicating that Ag3PO4@PANI photocatalyst possessed a superior stability. Further analyses showed that the enhancement of photocatalytic activity and photo-stability originated from the superior charge mobility derived from the π-conjugated structure of PANI and the hybridization effect arising from Ag3PO4 and PANI. Moreover, the matched energy level between PANI and Ag3PO4 led to the efficient separation and transfer of photo-generated electron-hole at their interface, thus improving the photocatalytic performance of Ag3PO4@PANI composite. In addition, PANI shell can prevent the dissolution of Ag3PO4 particles in aqueous solution during the photocatalytic reaction, resulting in a high stability of the Ag3PO4@PANI composite photocatalyst.

Graphical abstractDownload high-res image (275KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,