Article ID Journal Published Year Pages File Type
6455734 Journal of Catalysis 2017 10 Pages PDF
Abstract

•A reaction mechanism for the SCR process over V-based catalyst is proposed.•The Standard and Fast SCR reactions are coupled reproducing the correct stoichiometry.•Water desorption is rate determining at low temperatures for the Standard SCR reaction.•At high temperatures the rate determining step is in the reduction part.

We present a complete catalytic mechanism describing both the Standard and the Fast selective catalytic reduction (SCR) reactions in their correct stoichiometric form on a vanadia titania (anatase 001 facet) based catalyst model. It consists of two cycles, a NO-activation cycle and a Fast SCR cycle that share the same reduction part but use NO + O2 and NO2 respectively for the reoxidation. The stoichiometry of the Standard SCR reaction is obtained by coupling the two cycles and the stoichiometry of the Fast SCR reaction is represented by the Fast SCR cycle. We establish structures and energetics for each elementary reaction allowing us to calculate the rate for the two reactions by microkinetic modeling. We find at low temperatures the rate for the Standard SCR reaction is determined by H2O formation and desorption as neither NO nor O2 reacts exothermically with the reduced site prior to H2O desorption. On the contrary NO2 reacts directly with the reduced site resulting in higher rate for the Fast SCR reaction at low temperatures. The rate for the two reactions is the same at higher temperatures as the rate determining step is in the reduction part which is common to both reactions.

Graphical abstractDownload high-res image (45KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,