Article ID Journal Published Year Pages File Type
6469235 Computers & Chemical Engineering 2017 17 Pages PDF
Abstract
Modern biotechnologies enable the production of chemicals using engineered microorganisms. However, the cost of downstream recovery and purification steps is high, which means that the feasibility of bio-based chemicals production depends heavily on the synthesis of cost-effective separation networks. To this end, we develop a superstructure-based framework for bio-separation network synthesis. Based on general separation principles and insights obtained from industrial processes for specific products, we first identify four separation stages: cell treatment, product phase isolation, concentration and purification, and refinement. For each stage, we systematically implement a set of connectivity rules to develop stage-superstructures, all of which are then integrated to generate a general superstructure that accounts for all types of chemicals that can be produced using microorganisms. We further develop a superstructure reduction method to solve specific instances, based on product attributes, technology availability, case-specific considerations, and final product stream specifications. A general optimization model, including short-cut models for all technologies, is formulated. The proposed framework enables preliminary synthesis and analysis of bio-separation networks, and thus estimation of separation costs.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,