Article ID Journal Published Year Pages File Type
6469315 Computers & Chemical Engineering 2016 11 Pages PDF
Abstract
Recent advances for fabricating micro-featured architectures such as posts or pillars in fluidic devices provide exciting opportunities for multiphase flow management. Here we describe a novel, multiscale modeling approach for two-phase flows in microfeatured architectures developed within the Shan and Chen Lattice Boltzmann method. In our approach a fine scale is used to resolve the true microfeatured architecture, with a coarser scale used to model the gross geometry of the device. We develop the basic features of the approach and demonstrate its applicability to modeling retention times of droplets of a dispersed phase in an array of microposts - an architecture used in microfluidic reactors, bioreactors, and biomedical devises. Additionally we show that it is feasible to model the microfeatured geometry in a piecewise manner which includes extrapolating dispersed phase flow characteristics in the entire system based on simulations in smaller subdomains.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,