Article ID Journal Published Year Pages File Type
6471287 Electrochimica Acta 2017 11 Pages PDF
Abstract

•A pyrrole (Py) derivative functionalised with methyl red (MRPy) was synthesised.•MRPy was polymerised electrochemically in LiClO4/CH3CN with BFEE.•Electrochromic properties of PMRPy and PPy doped with methyl red (PPy/MR) were compared.•Colour of the PMRPy changes from magenta to yellow depending on the pH.•PMRPy films might be applicable in optoelectronic devices or in pH sensors.

A pyrrole derivative bearing 2-(4-dimethylaminophenylazo)benzoic acid, also known as Methyl Red (MR), was prepared by a simple synthetic route, and electropolymerised onto ITO/glass electrodes in (C4H9)4NBF4/CH3CN in presence of boron trifluoride diethyl etherate (BFEE). Films of polypyrrole (PPy) and PPy doped with MR (PPy/MR) were also deposited onto ITO/glass in order to compare their electrochromic properties with the films of PPy derivatised with MR. Cyclic voltammogram of the poly[3-(N-pyrrolyl)propyl 2-(4-dimethylaminophenylazo)benzoate] (PMRPy) film displayed a redox pair with anodic peak potential (Epa) at ca. 0.53 V and cathodic peak potential (Epc) at 0.25 V vs. Ag/Ag+, corresponding to the polymer p-doping, whilst the PPy/MR film shows capacitive behaviour with a redox pair in the cathodic region (Epa = −0.36 V and Epc = −0.62 V), similar to the PPy film (Epa = −0.10 V, and Epc = −0.15 V), and an anodic wave in the same potential range of that for PMRPy film. The electrochromic properties of the PMRPy film, such as chromatic contrast (Δ%T = 34.2%), switching time (τ = 10 s) and stability (Δ%T = 15% at the 100th cycle), were enhanced relative to the PPy/MR and PPy films. However, the colour of the PMRPy film changed from yellow (-0.8 V) to magenta (E = 1.0 V) in the first cycle and became light magenta at −0.8 V in the subsequent cycles. PMRPy films were also investigated in phosphate buffer solution (PBS, 2.0 ≤ pH ≤ 9.0) and after exposure to HCl vapour, in which the colour varied from magenta at pH = 2.0 to yellow at pH = 9.0. Such properties are interesting for application in pH sensors.

Graphical abstractDownload high-res image (105KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , ,