Article ID Journal Published Year Pages File Type
6472642 Electrochimica Acta 2016 9 Pages PDF
Abstract

To develop high-performance anode materials of lithium ion batteries (LIBs) for practical high energy application, a grain boundaries enriched hierarchically mesoporous MnO/C microsphere composite has been fabricated by an in-situ carbonization process. The mesoporous MnO/C microsphere is constructed by abundant grains and grain boundaries that are uniformly embedded in a carbon matrix. Such unique nanoarchitecture exhibits high tap density and structural stability, and provides 3D continuous transport pathways for electrons and Li-ions, enabling high electrochemical stability and improved lithium storage kinetics. As a consequence, the mesoporous MnO/C electrode delivers ever-increasing specific capacity (1200 mAh g−1 after 100 cycles at 100 mA g−1) and excellent rate capability (588 mAh g−1 at 2 A g−1). Such superior lithium storage performance suggests that the hierarchically mesoporous MnO/C microsphere electrode should be one of the most promising anode materials for electric vehicle and grid energy storage application.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,