Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6473385 | Fuel | 2018 | 10 Pages |
â¢Ni-Mg-Al catalyst was synthesized by evaporation-induced self-assembly method.â¢A coupled methane reforming reaction of DRM-POM was employed for producing syngas.â¢Existing O2 and Mg modifier could help to effectively inhibit coke deposition.â¢Higher CH4 conversion was accomplished in coupled DRM-POM reforming reaction.
Mesoporous Ni-Mg-Al and Ni-Al catalysts were facilely synthesized via evaporation-induced self-assembly (EISA) method and employed for coupled reforming reaction consisting of dry reforming of methane (DRM) and partial oxidation of methane (POM) to produce syngas (H2Â +Â CO). The Ni-Mg-Al and Ni-Al catalysts with encapsulated nickel nanoparticles were directly synthesized in one-pot way. For comparison, Ni/Al2O3 as reference catalyst was also prepared by general impregnation method. Characterization by BET, XRD and H2-chemisorption revealed that the Ni-Mg-Al catalyst owned larger surface area and higher Ni dispersion as well as smaller metallic Ni particles size compared to Ni-Al and Ni/Al2O3 catalysts. CO2-TPD demonstrated that the Ni-Mg-Al catalyst presented stronger basicity due to Mg incorporation. H2-TPR confirmed that the reduction of Ni-based species to Ni0 was performed in high temperature due to the formed NiAl2O4 phase. Activity tests indicated that this Ni-Mg-Al catalyst, due to its excellent physicochemical property, exhibited higher CH4 conversion, H2 selectivity, and H2/CO ratio in the coupled DRM-POM reaction. XRD, SEM and TG-DTA analyses of the used catalysts disclosed that the Mg-modified Ni-Mg-Al catalyst for syngas production using coupled DRM-POM reaction exhibited robust resistance to coke deposition. Consequently, by the synergistic cooperation between the coupled DRM-POM reaction and Mg-modified Ni-Mg-Al catalyst, high catalytic activity and stability could be accomplished to produce syngas.
Graphical abstractDownload high-res image (118KB)Download full-size image