Article ID Journal Published Year Pages File Type
6477315 Journal of Environmental Chemical Engineering 2017 8 Pages PDF
Abstract

The efficiency of organic biomass towards heavy metal remediation can be enhanced by inclusion of inorganic nanomaterials. In this study, nanocomposite was synthesized by dead yeast biomass and titania nanoparticles through immobilization method. The nanocomposite was further applied into spiked water and real effluent of tannery for effective sorption of Cr (VI). The nanocomposite was characterized using FESEM, TEM, BET, XRD, FTIR, and XRF analysis. Excellent potential of Cr (VI) removal efficiency (99.92%) was observed at varied operational conditions by using the nanocomposite. The quadratic model resulted from optimization predicted the response from the input limits. The equilibrium data obtained from sorption process was fitted both in Langmuir and Freundlich isotherm model. Langmuir adsorption isotherm showed significantly high monolayer sorption capacity (162.07 mg g−1) of the nanocomposite. The kinetics of the process was described by Pseudo-second-order model and the thermodynamic study showed an exothermic and spontaneous Cr (VI) sorption process. Desorption and reuse of the nanocomposite material had insignificant effect on Cr (VI) rejection efficiency.

Graphical abstractDownload high-res image (138KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,