Article ID Journal Published Year Pages File Type
6479202 Building and Environment 2017 9 Pages PDF
Abstract

•Reduced-scale mockup of a commercial aircraft section was constructed.•Air pressure and psychrometric conditions varying with flights were reproduced in chamber.•Flight altitude and cabin humidity have the greatest effect on moisture accumulation.•Strategies to reduce moisture accumulation on flights were proposed.

Aircraft can acquire large amounts of moisture in its insulation layers. The trapped moisture increases the aircraft's weight, degrades thermal and sound insulation performance, induces microbe growth, and causes various types of corrosion. It is known that moisture accumulation varies with flight conditions. However, the specific effects of individual parameters, such as flight altitude, cabin air pressure, cabin air temperature, and relative humidity, on moisture accumulation remain unknown. This investigation measures moisture accumulation mass in a reduced-scale mockup of an aircraft section. The mockup is composed of a metallic shell, porous insulation blankets, a ventilation system, heat and moisture generation devices, etc. The mockup is placed in a psychrometric altitude chamber in which the air pressure and psychrometric parameters can be varied in order to simulate different flight conditions. The moisture mass accumulated within the insulation blankets and on the interior skin of the shell is weighed on a digital precision balance. The results reveal that flight altitude and cabin air relative humidity have the greatest effect on moisture accumulation amounts, while cabin air pressure and temperature play relatively weak roles. Greater moisture gain is observed at a high flight altitude and a high cabin humidity level, and vice versa.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , ,