Article ID Journal Published Year Pages File Type
650719 European Journal of Mechanics - B/Fluids 2009 15 Pages PDF
Abstract

Pulsatile turbulent flow characteristics in an axisymmetric aortic aneurysm (AA) model were analyzed numerically using a simulated physiological waveform. The transport equations were solved using the finite element formulation based on the Galerkin method of weighted residuals. A fully-coupled fluid–structure interaction (FSI) analysis was utilized in this work. We investigated the effects of turbulent flow characteristics on the distribution of wall stress and flow patterns in AA models. Wall stress distributions were calculated by computational solid stress (CSS) model, which ignores the effect of the blood flow, and the FSI model that takes into account flow and solid mechanics. Our results showed that peak wall stress and peak deformation were found to occur shortly after peak systolic flow in the FSI model and at the peak luminal pressure condition in the CSS model. Further, CSS model underestimated wall stress calculations when compared to the FSI model. There were also significant differences in the structure of flow fields between the flexible and rigid wall aneurysm models. Contour plots of kinetic energy dissipation and the application of the Kolmogorov microscale suggest that the conditions that result in red blood cell damage and platelet activation most likely occur in the near-wall region of AA during turbulent flow.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes