Article ID Journal Published Year Pages File Type
650799 European Journal of Mechanics - B/Fluids 2010 10 Pages PDF
Abstract

A specific computational fluid dynamics (CFD) code is developed to predict the turbulent flow field in a stirred tank equipped with the pitched blade turbines (PBT) and to choose the most effective agitation system. The computer method permits the numerical analyses of turbines with complex geometries. After defining the list of nodes belonging to the interface separating the turbine shape and the flow domain, the meshes in the flow domain are automatically generated on a finite volume discretization. The three-dimensional flow of a fluid is numerically analyzed using the Navier–Stokes equations in conjunction with the standard k–εk–ε turbulence model. The effects of inclined angle on the local and global flow characteristics have been particularly determined. To verify our computer simulations, the power numbers were measured and compared with computer results. Also, the flow patterns have been compared with the ones found by other experimental results. These matching results indicate the validity of our computer method.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,