Article ID Journal Published Year Pages File Type
650893 European Journal of Mechanics - B/Fluids 2009 6 Pages PDF
Abstract

Instability of a slip flow in a curved channel formed by two concentric cylindrical surfaces is investigated. Two cases are considered. In the first (Taylor–Couette flow) case the flow is driven by the rotation of the inner cylindrical surface; no azimuthal pressure gradient is applied. In the second case (Dean flow) both cylindrical surfaces are motionless, and the flow is driven by a constant azimuthal pressure gradient. The collocation method is used to find numerically the critical values of the Taylor and Dean numbers, which establish the instability criteria for these two cases. The dependencies of critical values of these numbers on the ratio between the radii of concave and convex walls and on the velocity slip coefficient are investigated.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,