Article ID Journal Published Year Pages File Type
650895 European Journal of Mechanics - B/Fluids 2009 9 Pages PDF
Abstract

This study looks at MHD natural convection flow and heat transfer in a laterally heated enclosure with an off-centred partition. Governing equations in the form of vorticity–stream function formulation are solved using the polynomial differential quadrature (PDQ) method. Numerical results are obtained for various values of the partition location, Rayleigh, Prandtl and Hartmann numbers. The results indicate that magnetic field significantly suppresses flow, and thus heat transfer, especially for high Rayleigh number values. The results also show that the x-directional magnetic field is more effective in damping convection than the y-directional magnetic field, and the average heat transfer rate decreases with an increase in the distance of the partition from the hot wall. The average heat transfer rate decreases up to 80% if the partition is placed at the midpoint and an x-directional magnetic field is applied. The results also show that flow and heat transfer have little dependence on the Prandtl number.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,