Article ID Journal Published Year Pages File Type
650972 European Journal of Mechanics - B/Fluids 2007 30 Pages PDF
Abstract

An analytical version of the discrete-ordinates method (the ADO method) is used with recently established analytical expressions for the rigid-sphere scattering kernels to develop concise and particularly accurate solutions to the viscous-slip, the diffusion-slip, and the half-space thermal-creep problems for a binary gas mixture described by the linearized Boltzmann equation. In addition to a computation of the viscous-slip, the diffusion-slip, and the thermal-slip coefficients, for the case of Maxwell boundary conditions for each of the two species, the velocity, heat-flow, and shear-stress profiles are established for each species of particles. Numerical results are reported for two binary mixtures (Ne–Ar and He–Xe) with various molar concentrations.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes