Article ID Journal Published Year Pages File Type
650973 European Journal of Mechanics - B/Fluids 2007 16 Pages PDF
Abstract

The merging of two-dimensional co-rotating vortices is analysed through direct numerical simulations at large Reynolds numbers. It is shown how the Reynolds number affects each of the three phases that characterise this phenomenon. In the first phase, we examine the merging onset and focus on its definition. During the second rapid phase, the contributions of various flow regions upon the dynamics of a vortex are quantitatively studied. These regions are respectively the companion vortex, the filaments and an intermediate zone between vortices and filaments. The third phase is interpreted in terms of an advection diffusion process. Finally the final profile and circulation of the merged vortex is determined: the two thirds of the total circulation of the two initial vortices is contained in the newly formed vortex.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes