Article ID Journal Published Year Pages File Type
651960 Experimental Thermal and Fluid Science 2011 11 Pages PDF
Abstract
The flow between two concentric cylinders with the inner cylinder rotating and an imposed radial temperature gradient was studied using a digital particle image velocimetry method. The flow transition process under both a positive and negative temperature gradient with four different models of a stationary outer cylinder without and with differing numbers of slits (6, 9 and 18) was studied. The results showed that the buoyant force due to the temperature gradient clearly generated a helical flow when the rotating Reynolds number was small. For the plain and 6-slit models, the transition to a turbulent Taylor vortex flow was not affected by the temperature gradient considered in this study. In addition, the transition process of a larger number of slits (9-, 18-slit models) was accelerated due to the slit wall. As the temperature gradient became larger, the critical Reynolds number of the transition process decreased.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,