Article ID Journal Published Year Pages File Type
652147 Experimental Thermal and Fluid Science 2010 14 Pages PDF
Abstract

In this investigation, experiments conducted in a natural circulation test facility at low power and low pressure conditions, in the one single and two-parallel channels configuration are presented and discussed in detail. The novel manner of visualizing the results allowed characterizing the facility at any time and position which helped to thoroughly understand the instability mechanisms. Different modes were observed for each configuration. In the case of having two-parallel channels, four different behaviors have been observed: stable flow circulation, periodic high subcooling oscillations, a-periodical oscillations and out-of-phase periodical oscillations. In addition, stability maps were constructed in order to clarify the region in which each mode is dominant. The results obtained from both the one and two-parallel channels configurations are thus analyzed and compared. As a result, some similarities have been observed between the intermittent flow oscillations found in the single channel experiments and the high subcooling oscillations found in the two-parallel channels experiments. Moreover, similarities have also been found between the sinusoidal flow oscillations existing in the single channel experiments and the out-of-phase oscillations from the two-parallel channels experiments. The experiments presented in this work can be used to benchmark numerical codes and modeling techniques developed to study the start-up of natural circulation BWRs.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,