Article ID Journal Published Year Pages File Type
652364 Experimental Thermal and Fluid Science 2009 7 Pages PDF
Abstract

Measurements were made in the near field of piston driven axisymmetric coaxial synthetic jets emanating from an orifice and a surrounding annulus of equal exit areas and cavity volumes. Piston velocity, amplitude, radial spacing between the orifice and the annulus, and exit angles had a strong influence on the dominant features of the flow. Flow visualization revealed three distinct topologies of the jet consisting of expanding, contracting and recirculating regions and doubling of the number of foci inside of the cavity compared to jet from the orifice alone. The direction of the swirl/rotation imposed on the mean flow was also dependent on the direction of the rotation of dominant foci. Interaction between flow from the orifice and the annulus amplified the azimuthal instability of ring vortices due to the periodic axial stretching and compression of the streamwise vortex filaments. Bifurcation of ring vortices into elliptical lobes reported earlier [S.V. Gaimella, V.P. Schroeder, Local heat transfer distributions in confined multiple air impingement, ASME Journal of Electronic Packaging 123 (3) (2001) 165–172] for single cavity jet was also observed in the coaxial jet. The number of cellular structures however was considerably larger than the single jet case. Large excursions of the jets from the plane of symmetry were observed. Power spectra exhibited sub-harmonic distribution of energy due to coalescence of the vortices. Growth of jet width and decay of centerline velocity were strongly influenced by the spacing and forcing frequency.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,