Article ID Journal Published Year Pages File Type
652468 Experimental Thermal and Fluid Science 2010 8 Pages PDF
Abstract
This research experimentally investigates the influences of electrical voltage, particle sizes and layer arrangement on the heat and mass transfer in porous packed bed subjected to electrohydrodynamic drying. The packed bed consists of a single and double layers of glass beads, water and air. Sizes of glass beads are 0.125 and 0.38 mm in diameter. Electric fields are applied in the range of 0-15 kV. Average velocity and temperature of hot airflow are controlled at 0.33 m/s and 60 °C, respectively. The results show that the convective heat transfer coefficient and drying rate are enhanced considerably with a Corona wind. In the single-layered case, due to effects of porosity, the packed bed containing small beads has capillary pressure higher than that with big beads, resulting in higher removal rate of water and higher rate of heat transfer. Considering the effect of capillary pressure difference, temperature distribution and removal rate of moisture in the double-layered case appear to be different than those observed in the single-layered case. Moreover, in the double-layered case, the fine-coarse packed bed gives drying rate higher than that given by the coarse-fine packed bed.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,