Article ID Journal Published Year Pages File Type
652650 Experimental Thermal and Fluid Science 2008 13 Pages PDF
Abstract

This study performed detailed measurements of jet flows through a row of forward expanded holes into a mainstream over a concave surface using digital particle image velocimetry. Each of ejected holes had a streamwise inclined angle of 35° bounded on a concave surface with constant radius of 382 mm. The spacing of adjacent holes is 1.5D. The density and the momentum flux ratio of the mainstream to the jet flow were 1.0. Results show detailed 2D mean velocity maps on several horizontal and vertical planes and a 3D streamline pattern of jet mean velocity. The streamlines of 3D mean velocity clearly display different flow characteristics of the ejected jet flow along the transverse direction. In addition, the particle trajectory of a ring enclosing an ejected jet above the injection hole was also presented to show movement of jet.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,