Article ID Journal Published Year Pages File Type
652783 Experimental Thermal and Fluid Science 2006 12 Pages PDF
Abstract

The characteristics of a gaseous flow of nitrogen in commercial stainless steel microtubes for gas chromatography having a nominal inner diameter of 762, 508, 254 and 127 μm are experimentally investigated. The friction factor is calculated as a function of the Reynolds number and plotted in a Moody chart. A comparison among three different methods to calculate the friction factor is made in order to evidence limitations and advantages of each method. It was observed that in the laminar regime the Poiseuille law correctly predicts the value of the pressure drop. It has been evidenced that in order to make accurate experiments on the frictional characteristics of commercial microtubes the value of the inner diameter given by the manufacturer has to be always verified. The experimental data presented in this work remark how in microtubes the compressibility effects related to the axial variation of the gas density tend to become important at large Reynolds numbers and small diameters even if the average Mach number is low. The effects due to the gas acceleration on the laminar-to-turbulent transition in microtubes are investigated by evidencing the role of the L/D (length to diameter) ratio on the transition to turbulence. No early transition to turbulence has been evidenced in the tests, instead it takes place at Reynolds numbers ranging between 1800 and 2900.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,