Article ID Journal Published Year Pages File Type
652854 International Communications in Heat and Mass Transfer 2016 9 Pages PDF
Abstract
The heat transfer from the vertical arrays of a set of equally spaced cylinders in molten salts is studied numerically to obtain the laminar natural convection heat transfer mechanism of molten salts around a vertically aligned horizontal cylinder set. Simulations are performed for arrays of 2-10 horizontal cylinders at a Rayleigh number based on a cylinder diameter between 2 × 103 and 5 × 105. Results show that the natural convective heat transfer of molten salts from the bottom cylinder of the array remains the same as that from a single cylinder. By contrast, the downstream cylinders may either be enhanced or reduced mainly depending on their location in the array and on the tube spacing. Heat transfer dimensionless correlating equations are proposed for any individual cylinder in the two vertically aligned horizontal cylinders. The heat transfer mechanism from the horizontal cylinders set in a vertical array is also simulated, and the results show that cylinder spacing can influence the average heat transfer rate around the whole tube array. Thus, in real applications, adjusting the cylinder spacing better enhances the average heat transfer from the whole tube array.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,