Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
653089 | International Communications in Heat and Mass Transfer | 2015 | 4 Pages |
Abstract
A hybrid system design integrating a thermoelectric (TE) module has recently represented the advanced photovoltaic (PV) prototype with promoted efficiency for utilizing solar energy from the surroundings. Our present work during development of such a hybrid PV/TE system evaluates the thermal behaviors and the cooling performance associated with when integrating TE and heat sink modules. It has been noticed that a more effective structure through combining a heat sink with a TE module profits heat dissipation by cooling down the whole cell by ~ 8 °C, wherein the TE module itself demonstrates the cooling performance by ~ 27% enhancement in addition to its conventional role for electricity generation. Therefore, the PV/TE with a proper design can be used as a passive method for improving the cell efficiency as well as alleviating hot spot, which is typically occurring when the cell is unevenly heated during its operation. These results could be useful for further advancement on stability of power generation of a hybrid PV/TE system and may also be important for developing high-powered light emit diode.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Wei Pang, Yu Liu, Shiquan Shao, Xin Gao,