Article ID Journal Published Year Pages File Type
653091 International Communications in Heat and Mass Transfer 2015 11 Pages PDF
Abstract

This study presents an analytical solution, for fully developed non-Newtonian fluid flows in circular channels under isoflux thermal boundary conditions based on perturbation techniques. Since the physical properties are generally a function of temperature and may not be assumed constant under certain circumstances, the change in viscosity and thermal conductivity with temperature was taken into account. Viscous dissipation term was also included in the performed analysis. In this study, first closed form expressions for velocity, temperature distributions, and Nusselt numbers corresponding to constant thermophysical properties were given in terms of governing parameters. Then, numerical calculation was performed to obtain the values of Nusselt number and global entropy generation for variable thermophysical properties. The results revealed that neglecting the property variation significantly affects heat transfer characteristics and entropy generation, in which the deviation from the constant physical property assumption may reach up to about 32.6%.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,