Article ID Journal Published Year Pages File Type
653222 International Communications in Heat and Mass Transfer 2014 7 Pages PDF
Abstract

Heat transfer performance and pressure drop tests were performed on a circular tube with small pipe inserts. These inserts with different spacer lengths (S = 100, 142.9 and 200 mm) and arc radii (R = 5, 10 and 15 mm) were tested at Reynolds numbers between 4000 and 18,000. Tap water was used as working fluid. The use of pipe inserts allowed for a high heat transfer coefficient with relatively low flow resistance. The Nusselt number and friction factor increase with the decrease in spacer length. Optimal results were obtained for S = 100 mm (R = 10 mm). Heat transfer rates and friction factors were enhanced by 2.09–2.67 and 1.59–1.85 times, respectively, to those in the plain tube. Performance evaluation criterion (PEC) values were approximately 1.79–2.17. The Nusselt number and friction factor increase with the decrease in arc radius. Small pipe inserts with R = 5 mm and S = 100 mm show maximal heat transfer rates of 2.61–3.33 and friction factors of 1.6–1.8 times those of the empty tube. The PEC values were 2.23–2.7. Compared with other inserts, pipe inserts can transfer more heat for the same pumping power for their unique structure.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,