Article ID Journal Published Year Pages File Type
653247 International Communications in Heat and Mass Transfer 2014 9 Pages PDF
Abstract

Bénard convection around a circular heated cylinder embedded in a packed bed of spheres is studied numerically. The Forchheimer–Brinkman–extended Darcy momentum model with the Local Thermal Non-Equilibrium energy model is used in the mathematical formulation for the porous layer. The governing parameters considered are the Rayleigh number (103 ≤ Ra ≤ 5 × 107) and the thermal conductivity ratio (0.1 ≤ kr ≤ 10,000). The structural properties of the packed bed are kept constant as: cylinder-to-particle diameter ratio D/d = 20 and porosity ε = 0.5, while the Prandtl number is fixed at Pr = 0.71. It is found that the presence of the porous medium suppresses significantly the strong free convection produced in the empty enclosure, and reduces considerably the high intensity of the pair of vortices generated behind the cylinder. Also, the results show that the porous medium can play the role of insulator or enhancer of heat transfer from the heat source, depending mainly on their thermal conductivities regardless of the Rayleigh number.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,