Article ID Journal Published Year Pages File Type
653335 International Communications in Heat and Mass Transfer 2014 8 Pages PDF
Abstract

Thermal performance of convective flow boiling heat transfer and particulate fouling of CuO/EG nanofluids has been experimentally studied inside the annular heat exchanger. CuO nanoparticles were well-dispersed and stabilized using a new combinational method (adding surfactant, stirring, pH control and sonication) in ethylene glycol (EG) as the base fluid in different weight fractions of nanoparticles (0.1–0.4%). Despite stabilizing the nanofluids, a considerable boiling heat transfer reduction due to the fouling resistance has been reported. Subsequently, scale formation and particulate fouling of nanofluids in term of fouling resistance has experimentally been investigated. Influences of operating parameters on the fouling resistance and heat transfer coefficient are investigated and briefly discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,