Article ID Journal Published Year Pages File Type
653400 International Communications in Heat and Mass Transfer 2013 8 Pages PDF
Abstract
Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid has been investigated experimentally. Magnetic Fe3O4 nanoparticles were synthesized by chemical co-precipitation method and the nanofluids were prepared by dispersing nanoparticles into different base fluids like 20:80%, 40:60% and 60:40% by weight of the ethylene glycol and water mixture. Experiments were conducted in the temperature range from 20 °C to 60 °C and in the volume concentration range from 0.2% to 2.0%. Results indicate that the thermal conductivity increases with the increase of particle concentration and temperature. The thermal conductivity is enhanced by 46% at 2.0 vol.% of nanoparticles dispersed in 20:80% ethylene glycol and water mixture compared to other base fluids. The theoretical Hamilton-Crosser model failed to predict the thermal conductivity of the nanofluid with the effect of temperature. A new correlation is developed for the estimation of thermal conductivity of nanofluids based on the experimental data.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,