Article ID Journal Published Year Pages File Type
6534008 Solar Energy Materials and Solar Cells 2018 6 Pages PDF
Abstract
We have found that the effective heat input for bifacial glass-glass modules is increasingly larger with increasing rear irradiance compared to monofacial modules. Measured temperatures of rooftop-installed modules strongly indicate that the effective heat transfer coefficient of glass-glass modules is higher than that of white back sheet modules. The observed combined effect of heat input and heat transfer is that only at rear irradiance fractions beyond 15% the additional heat input can cause the bifacial modules to be hotter than their monofacial counterpart, but the energy yield is still much higher due to the large bifacial gain. In the case of moderate albedo, the bifacial energy gain is not accompanied by a higher temperature of the bifacial module compared to the monofacial module.
Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,