Article ID Journal Published Year Pages File Type
653414 International Communications in Heat and Mass Transfer 2013 8 Pages PDF
Abstract
The thermal performance of a single interrupted microchannel heat sink is analyzed. The generality of Brownian motion velocity had been investigated in the range of various Reynolds numbers of 168 to 1200 and Al2O3 nanofluid volume fractions of 0.01 to 0.04. Three different Brownian motion velocities represent the nanoparticle velocity had been modeled in two-phase modeling of nanofluid system. The heat transfer enhancement in this study is investigated in terms of the predicted Nusselt number. As the Reynolds number increased from 200 to 1200, augmentation in average Nusselt number is predicted from 57.64% to 57.97%. At increasing nanofluid volume fraction from 0.01 to 0.04, conduction dominated the heat transfer process results in Nusselt number increment from 3.90% to 5.13%.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,