Article ID Journal Published Year Pages File Type
653459 International Communications in Heat and Mass Transfer 2013 9 Pages PDF
Abstract
This study reports on the influence of dual vibrating fans on flow and thermal fields through numerical analyses and experimental measurements. Two piezoelectric fans were arranged face to face and were vertically oriented to the heat source. 3D simulation was performed with FLUENT and ABAQUS with the use of code coupling interface MpCCI to calculate the velocity and temperature distribution on the horizontal hot plate. The fans' motion was described as deformable parts by ABAQUS at their first mode vibration. The effects of vibration phase difference between the fans corresponding to in-phase (Φ = 0°) and out-of-phase (Φ = 180°) vibrations were explored in terms of transient temperature and flow fields. The purpose is to enhance heat dissipation from the microelectronic component. Comparison with the performance of a single fan is made to assess the significance of the additional fan on thermal performance. Good comparison results were achieved through accurate modeling of the most important features of the fans and through heat transfer. Computed results show that the single fan enhanced heat transfer performance within approximately 2.3 times for the heated surface. By contrast, the dual fans enhanced heat transfer performance within approximately 2.9 for out-of-phase vibration (Φ = 180°) and 3.1 for in-phase vibration (Φ = 0°).
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,