Article ID Journal Published Year Pages File Type
653631 International Communications in Heat and Mass Transfer 2012 6 Pages PDF
Abstract

A channel with a height- or width-tapered variation is designed to improve the thermal performance of a microchannel heat sink (MCHS). To this end, a three-dimensional MCHS model is constructed to analyze the effects of the height- and width-tapered ratios on the thermal performance of the MCHS. The thermal resistance and temperature distribution are taken as the thermal performance indicators. Numerical predictions show that the relationship between the thermal resistance and the width-tapered ratio is not monotonic at the fixed pumping power. The thermal resistance first decreases and then increases. A similar behavior is also exhibited by the height-tapered ratio. However, the height-tapered ratio effects can be negligible. It is also found that the width-tapered-channel design has a lower and a relatively uniform temperature distribution compared to parallel or height-tapered channel design. Moreover, the MCHS with width-tapered channel design showed a maximum enhancement in thermal performance of around 16.7% over that of the parallel-channel design when the pumping power is larger than 0.4 W.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,