Article ID Journal Published Year Pages File Type
653651 International Communications in Heat and Mass Transfer 2012 7 Pages PDF
Abstract

This study reports on a numerical investigation of the effects of variation in working fluids and operating conditions on the performance of a thermoacoustic refrigerator. The performance of a thermoacoustic refrigerator is evaluated based on the cooling power, coefficient of performance (COP), and the entropy generation rate within the device. The effect of the variation of the working fluid is observed by changing the Prandtl number (Pr) between 0.7 and 0.28. The operating conditions investigated are drive ratio (DR), stack plate spacing (y0), and mean pressure (pm). The present research shows that lowering the Pr of the working fluid does not improve the performance of a thermoacoustic refrigerator for all of the selected operating conditions. COP increases 78% by reducing the Pr from 0.7 to 0.28 at y0 = 3.33δk, at atmospheric pressure and a DR of 1.7%. While the COP decreases by reducing the Pr from 0.7 to 0.28 at y0 = 1.0δk, at atmospheric pressure, and a DR of 1.7%. The results are compared with the available experimental data and found good agreement.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,