Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6537725 | Agricultural and Forest Meteorology | 2013 | 9 Pages |
Abstract
Eddy covariance flux towers were used to measure net ecosystem production over three adjacent agricultural fields in Manitoba, Canada, from 2009 to 2011. Two fields were converted from long-term perennial hay/pasture to annual cropping, while the third field served as a control field that was maintained as hay/pasture. One converted field had a rotation of oat-canola-oat crops, while the second was hay-oat-fallow. Weather was an important driver of inter-annual variability, with poor yields on all fields in 2011 because of dry conditions in summer, with the summer-fallow condition on one field caused by excess spring moisture not allowing planting. The cumulative net ecosystem production of the oat-canola-oat field showed a net CO2 emission of 100 g C mâ2, the hay-oat-fallow field emitted 500 g C mâ2, and the hay field gained 550 g C mâ2 by the end of the 30-month study period. The hay field had the highest cumulative gross primary production of 2500 g C mâ2, whereas the oat-canola-oat and hay-oat-fallow fields had only about 1400 g C mâ2. The perennial field had the advantage of both early- and late-season growth when crops were absent on the other fields. The hay and hay-oat-fallow fields had comparable cumulative ecosystem respiration (1400 g C mâ2). Manure additions contributed 300 g C mâ2 on the two converted fields. With harvest exports and manure additions included, the oat-canola-oat field was a carbon source of 240 g C mâ2, the hay-oat-fallow field was a source of 415 g C mâ2, and the hay/pasture field was a sink of 120 g C mâ2 over the 30-month period.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Atmospheric Science
Authors
Amanda M. Taylor, Brian D. Amiro, Trevor J. Fraser,