Article ID Journal Published Year Pages File Type
653987 International Communications in Heat and Mass Transfer 2011 9 Pages PDF
Abstract

In this study, flow-field and heat transfer through a copper–water nanofluid around circular cylinder has been numerically investigated. Governing equations containing continuity, N–S equation and energy equation have been developed in polar coordinate system. The equations have been numerically solved using a finite volume method over a staggered grid system. SIMPLE algorithm has been applied for solving the pressure linked equations. Reynolds and Peclet numbers (based on the cylinder diameter and the velocity of free stream) are within the range of 1 to 40. Furthermore, volume fraction of nanoparticles (φ) varies within the range of 0 to 0.05. Effective thermal conductivity and effective viscosity of nanofluid have been estimated by Hamilton–Crosser and Brinkman models, respectively. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are investigated. It is found that the vorticity, pressure coefficient, recirculation length are increased by the addition of nanoparticles into clear fluid. Moreover, the local and mean Nusselt numbers are enhanced due to adding nanoparticles into base fluid.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,