Article ID Journal Published Year Pages File Type
654039 International Communications in Heat and Mass Transfer 2009 7 Pages PDF
Abstract

Microgeometry fluid dynamics has gotten a lot interest due to the arrival of Micro-Electro-Mechanical systems (MEMS). When the mean free path of a gas and characteristic length of the channel are in the same order, continuum assumption is no longer valid. In this situation velocity slip and temperature jump occur in the duct walls. Fully developed numerical analysis for characteristic laminar slip flow and heat transfer in rhombus microchannels are performed with slip velocity, and temperature-jump boundary condition at walls. The impacts of Reynolds number (0.1 < Re < 40), velocity slip, and temperature-jump on Poiseuille number, and Nusselt number for different aspect ratio (0.15 < A < 1.0), and Knudsen number are studied in detail. The contours of non-dimensional velocity for some cases are examined as well. The results show that aspect ratio and Knudsen number have important impact on Poiseuille number, and Nusselt number in rhombus microchannels. Reynolds number has considerable influence on Nusselt number at low Reynolds number, but its influence on Poiseuille number is not very important at the studied range.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,