Article ID Journal Published Year Pages File Type
654199 International Communications in Heat and Mass Transfer 2009 5 Pages PDF
Abstract

This work examines the natural convection heat transfer from a horizontal isothermal cylinder of elliptic cross section in a Newtonian fluid with temperature dependent internal heat generation. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying cubic spline collocation method. Results for the local Nusselt number and the local skin-friction coefficient are presented as functions of eccentric angle for various values of heat generation parameters, Prandtl numbers and aspect ratios. Results show that both the heat transfer rate and skin friction of the elliptical cylinder with slender orientation are higher than the elliptical cylinder with blunt orientation. Moreover, an increase in the heat generation parameter for natural convection flow over an isothermal horizontal elliptic cylinder leads to a decrease in the heat transfer rate from the elliptical cylinder and an increase in the skin friction of the elliptical cylinder.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,