Article ID Journal Published Year Pages File Type
654406 International Communications in Heat and Mass Transfer 2007 10 Pages PDF
Abstract

The steady laminar magnetohydrodynamics (MHD) flow of a viscous Newtonian and electrically conducting fluid over a rotating disk with slip boundary condition is investigated taken into account the variable fluid properties (density, (ρ), viscosity, (μ) and thermal conductivity, (κ)). These fluid properties are taken to be dependent on temperature. The governing equations, which are partial and coupled, are transformed to ordinary ones by utilizing the similarity variables introduced by von Karman and the resulting equation system is solved numerically by using a shooting method. The resulting velocity and temperature distributions are shown graphically for different value of parameters entering into the problem. The numerical values of the radial and tangential skin-friction coefficients and the rate of heat transfer coefficient are shown in tabular form.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,