Article ID Journal Published Year Pages File Type
654477 International Communications in Heat and Mass Transfer 2007 13 Pages PDF
Abstract

The effects of Ohmic heating and viscous dissipation on unsteady laminar magneto-hydrodynamics (MHD) flow of a viscous Newtonian and electrically conducting fluid over a rotating disk taken into account the variable fluid properties (density, (ρ), viscosity, (μ) and thermal conductivity, (κ)) in the presence of Hall and ion-slip currents effects have been examined. These fluid properties are taken to be dependent on temperature. The unsteady Navier–Stokes equations along with the energy equation are reduced to a system of ordinary differential equations by using similarity transformations and the resulting equation system is solved numerically by using a shooting method. Results for the details of the velocity as well as temperature are shown graphically and the numerical values of the skin friction and the rate of heat transfer are entered in tables.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,