Article ID Journal Published Year Pages File Type
654496 International Communications in Heat and Mass Transfer 2010 7 Pages PDF
Abstract
This article investigates the thermal performance of a thermoelectric water-cooling device for electronic equipment. The influences of heat load and the thermoelectric cooler's current on the cooling performance of the thermoelectric device are experimentally and theoretically determined. This study develops a novel analytical model of thermal analogy network to predict the thermal capability of the thermoelectric device. The model's prediction agrees well with the experimental data. The experimental result shows that when heat load increases from 20 W to 100 W, the lowest overall thermal indicator increases from − 0.75 KW− 1 to 0.62 KW− 1 at the optimal electric current of 7 A. Besides, this study verifies that the thermal performance of the conventional water-cooling device can be effectively enhanced by integrating it with the thermoelectric cooler when the heat load is below 57 W.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,