Article ID Journal Published Year Pages File Type
654534 International Communications in Heat and Mass Transfer 2006 8 Pages PDF
Abstract
The nonlinear flow and heat transfer characteristics for a slot jet impinging on a slightly curved concave surface are experimentally studied here. The effects of jet Reynolds number on the jet velocity distribution and circumferential Nusselt numbers are examined. The nozzle geometry is a rectangular slot and the dimensionless nozzle-to-surface distance equals to L⁎ = 8. The constant heat fluxes are accordingly applied to the surface to obtain an impingement cooling by the air jet at ambient temperature. The measurements are made for the jet Reynolds numbers of 8617, 13 350 and 15 415. New correlations for local, stagnation point, and average Nusselt numbers as a function of jet Reynolds number and dimensionless circumferential distance are reported.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,