Article ID Journal Published Year Pages File Type
654590 International Communications in Heat and Mass Transfer 2009 6 Pages PDF
Abstract

A numerical study has been conducted to investigate the fluid flow and heat transfer of an air-cooled metal foam heat exchanger under the high speed laminar jet confined by two parallel walls for which the range of the Reynolds number is 600–1000. Two independent numerical solvers were used and cross-validated being a FORTRAN code and the commercially available software CFD-ACE. The effects of local thermal non-equilibrium, thermal dispersion, porosity, and pore density on the heat transfer augmentation are examined for different Reynolds numbers. Application of energy flux vectors, for convection visualization, is also illustrated for a more comprehensive analysis of the problem. Finally, the performance of the metal foam heat exchanger is compared to that of conventional finned design. It is observed that the heat removal rate can be greatly improved at almost no excess cost.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,