Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
654650 | International Communications in Heat and Mass Transfer | 2009 | 6 Pages |
Using MEMS technology, a Pt microheater (60 × 100 µm2) fabricated on a glass wafer is placed in a silicon-based microchannel of trapezoidal cross section. With the aid of a high-speed CCD and based on Pt's linear temperature-resistance characteristic, flow boiling phenomena and temperature response on the surface of the microheater in the microchannel under pulse heating are observed and recorded. At a given mass flux, nucleate boiling and film boiling begin to appear on the microheater with increasing heat flux. A flow boiling map, showing the effects of heat and mass flux on nucleate and film boiling regimes on the microheater at a pulse heating width of 2 ms, is presented. It is found that nucleate boiling is changed to film boiling as the heat flux supplied to the microheater is increased. Furthermore, increasing mass flux increases the heat flux required for the incipience of nucleate boiling and film boiling on the microheater in the microchannel.