Article ID Journal Published Year Pages File Type
654760 International Communications in Heat and Mass Transfer 2008 9 Pages PDF
Abstract

This paper concerns experimental and theoretical studies of freeze-drying process at microwave heating. Two kinds of random solids were dried: material which are assumed to have no internal porosity (ground glass), as well as one containing internal porosity (Sorbonorit 4 activated carbon). Formulated one-dimensional two-region model of freeze-drying process at microwave heating takes into account unknown a priori sublimation temperature Ts(t) and mass concentration of water vapor Cs(t) at moving ice front. Steady capacity of internal heat source is correlated with electric field strength E and dissipation coefficient K(T) in both regions of the material to be dried. Linear temperature dependency of dissipation coefficient is assumed and described by two regression parameters: μ1i and μ2i for dry (i = I) and frozen (i = II) bed, respectively. A correlation between both measured and calculated temperatures of the sample and actual electric field strength was observed. Fairly good agreement between experimental and simulated results was stated.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,