Article ID Journal Published Year Pages File Type
654827 International Communications in Heat and Mass Transfer 2006 12 Pages PDF
Abstract

The steady laminar flow and heat transfer of an incompressible, electrically conducting, power law non-Newtonian fluids in a rectangular duct are studied in the presence of an external uniform magnetic field. The momentum and energy equations are solved iteratively using a finite difference method. Two cases of the thermal boundary conditions are considered; (1) T thermal boundary condition “constant temperature at the wall” and (2) H2 thermal boundary condition “constant heat flux at the wall”. The viscous and Joule dissipations are taken into consideration in the energy equation. A numerical solution for the governing partial differential equations is developed and the influence of the magnetic field on the velocity distribution, the friction factor and the average Nusselt number are discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,