Article ID Journal Published Year Pages File Type
655007 International Journal of Heat and Fluid Flow 2015 9 Pages PDF
Abstract
This paper describes an experimental and computational investigation into the influence of tip clearance on the blade tip heat load of a high-pressure (HP) turbine stage. Experiments were performed in the Oxford Rotor facility which is a 112 stage, shroudless, transonic, high pressure turbine. The experiments were conducted at an engine representative Mach number and Reynolds number. Rotating frame instrumentation was used to capture both aerodynamic and heat flux data within the rotor blade row. Two rotor blade tip clearances were tested (1.5% and 1.0% of blade span). The experiments were compared with computational fluid dynamics (CFD) predictions made using a steady Reynolds-averaged Navier-Stokes (RANS) solver. The experiments and computational predictions were in good agreement. The blade tip heat transfer was observed to increase with reduced tip gap in both the CFD and the experiment. The augmentation of tip heat load at smaller clearances was found to be due to the ingestion of high relative total temperature fluid near the casing, generated through casing shear.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,