Article ID Journal Published Year Pages File Type
655012 International Journal of Heat and Fluid Flow 2016 9 Pages PDF
Abstract
A special spray model is applied to study the spray behavior with high injection pressure and micro-hole nozzle. To reveal the cavitation in diesel nozzle and its influence on spray and atomization, the Large Eddy Simulation (LES) turbulence model is adopted to detect the cavitation, and then the special spray model coupling the cavitation is build. From research results, three important conclusions can be drawn. Firstly, the cavitation flow can raise the effective velocity at the nozzle exit and such effect become even more obvious with higher injection pressure, e.g.180 MPa. Secondly, the applied spray model is in good agreement with the spray characteristics and images obtained from the EFS8400 spray test platform. Thirdly, the cavitation with high injection pressure and micro-hole nozzle can increase the spray cone angle and reduce the spray penetration; the cavitation intensity has a great impact on the spray velocity field and vorticity intensity, especially at the initial spray field under the condition of high injection pressure.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,