Article ID Journal Published Year Pages File Type
6551822 Forensic Science International 2016 7 Pages PDF
Abstract
The ability to objectify ballistic evidence is a challenge faced by firearms examiners around the world. A number of researchers are trying to improve bullet-identification systems to address deficiencies detailed within the National Academy of Science report (2009). More recently focus has turned to making use of more sophisticated imaging modalities to view entire regions of the projectile and the development of automated systems for the comparison of the topographical surfaces recorded. Projectiles from a newly bought air pistol with 0.177 calibre pellets (unjacketed), fired series of 609 pellets were examined using an optical microscope. A mathematical methodology was developed to pre-process the resultant topographical maps generating point data for comparison, analysed using the principal component analysis (PCA). In most cases limited to reasonable success was achieved. The objective method still requires an operator to identify the Land Engraved Areas to be scanned, however the mathematical alignments were objectively achieved. The PCA results illustrated that the striation marks were neither exclusive nor specific to the LEA regions but rather crossed over regions. This study also proves that a single weapon does not necessarily leave identical marks of projectiles on its surface.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
,