Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
655675 | International Journal of Heat and Fluid Flow | 2008 | 11 Pages |
Effects of essential performance parameters on the starting transient of a straight cylindrical supersonic exhaust diffuser (SED) are numerically investigated. Diffuser starting and evacuation transients are examined in terms of SED lengths and pre-evacuation configuration. Preconditioned Favre-averaged Navier–Stokes equations incorporated with a low Reynolds number turbulence model and Sakar’s method to treat turbulence compressibility is solved for strongly turbulent all-Mach diffuser flows. The numerical method is properly validated with the measurements with accuracy. Characteristic locus of diffuser-starting and diffuser-unstarting modes is constructed for the diffusers of three different lengths (L/D = 2, 5, and 20). Flow evolutions visualized in diffuser mode-transition regimes manifest a threshold L/D over which the SED starting transient is unique. An occurrence of plume blowback into the vacuum chamber due to lower initial pressure (PC,INIT/PA = 0.0027) expedites expansion of nozzle exhaust and diffuser choking, and causes faster chamber evacuation than the atmospheric starting.